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We introduce a technique for uncertainty quantification of fields and global quantities based on the Guide to the expression of
Uncertainty in Measurements (GUM). It is much faster than alternative approaches based on Monte Carlo or polynomial chaos
expansion while maintaining good accuracy when the materials uncertainty is moderate. The method is applied to electro-quasistatic
(EQS) problems arising in biomedical engineering. A good agreement is found with respect to the Monte Carlo method.
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THE aim of this paper is to introduce a method for
uncertainty quantification in numerical simulations of

electromagnetic problems based on the Guide to the expression
of Uncertainty in Measurements (GUM) [1]. The proposed
method is an instance of the well known design of experiments
(DOE) method [2], that, to our knowledge, has never been
used for such uncertainty quantification. Its virtues are that it
is very fast and straightforward to implement while maintaining
good accuracy w.r.t. Monte Carlo or other methods based on
polynomial chaos expansion, see [3], [4] when the materials
uncertainty is moderate (i.e. at most a few tens per cent).

As an application, we consider state-of-the-art methods for
point-of-care diagnostics of the thrombotic risk profile which
are based on lab-on-a-chip microfluidic devices where whole
blood flows on a surface covered by a thrombogenic substrate
[5]. An accurate estimation of thrombus growth is obtained by
fusing optical and impedance data [6]. However, the electric
properties of blood are not precisely known and vary depending
on the individual, the hydration and other physiological param-
eters. This clearly affects the estimated thrombus growth and it
is just an example of application where the impact of material
parameters uncertainties is of fundamental importance.

I. UNCERTAINTY QUANTIFICATION BASED ON GUM

The Guide to the expression of Uncertainty in Measurements
(GUM) [1] provides the general guidelines, valid for all the
fields of applications, to evaluate the uncertainty in measure-
ments. In indirect measurements, the uncertainty is evaluated
by means of the law of propagation of uncertainty. If the
quantity y is y = f(x1, x2, ..., xN ), then the uncertainty on
y, u(y), can be expressed as
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In case of uncorrelated input quantities, since u(xi, xj) = 0
for i 6= j, the law of uncertainty propagation reduces to

u2(y) =
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The law of uncertainty propagation leans on two assump-
tions: the approximation of f with the Taylor’s polynomial
truncated at first order and the central limit theorem. Truncating
the Taylor’s polynomial of f at the first order means

y = f(x1, x2, ..., xN ) ≈ ŷ +

N∑
i=1

∂f

∂xi
(xi − x̂i), (3)

where the hat represents the linearization point; this first
assumption is valid if the uncertainty of input quantities is
small enough to neglect higher orders of nonlinearity of f .

The second assumption (the central limit theorem) assures
that the linear combination of a wide number of random
variables (each with unknown distribution) tends to a Gaussian
behavior, so the uncertainty on y in (1) and (2) has Gaussian
Probability Density Function (PDF) with standard deviation
u(y), if we consider the square root of central moment of order
two for the input quantities u(xi).

If one or both of these two assumptions are not valid, the un-
certainty propagation does not provide an accurate estimation;
if none of them is valid, the only way for the GUM is the Monte
Carlo method [7], which needs a very long computational
time. If only the first assumption is valid, i.e. that the number
of input quantities is small and they are not Gaussian, the
PDF of y can be evaluated observing that (3) is the sum of
N random variables weighted by their sensitivity coefficients
ci = ∂f/∂xi; in this case, it is possible to determine the PDF
of y by means of the convolution of the PDFs of the input
random variables. Naming gXi

(xi) the PDFs of the random
variable Xi, the PDF gY (y) of y is

gY (y) = c1 gX1
(x1) ∗ c2 gX2

(x2) ∗ ... ∗ cN gXN
(xN ). (4)

This is the approach used in the numerical experiments.
The sensitivity coefficients can be evaluated by perturbing

each input uncertain quantity; this means that in the simulation
of a model having N uncertain input quantities, we need to



Fig. 1. A portion of a microfluidic channel whose dimensions are
50µm×50µm×70µm. In the channel red blood cells flow at a low shear
rate. On the bottom of the channel, two gold electrodes 10µm wide are used
for impedance measurements.

Fig. 2. PDF of the real part of the current.

perform N + 1 simulations to obtain the PDF of the output
quantity.

II. NUMERICAL EXPERIMENTS

As an example, we consider a blood sample flowing with
at a low shear rate in a microfluidic channel, see Fig. 1. We
compute the uncertainty quantification of the current between
the two gold electrodes placed in the bottom of the channel
when a known electro-motive force of 1V is enforced between
them. It is assumed that plasma has a conductivity uniformly
distributed in [0.9, 1.1] S/m, the red blood cell (RBC) lipidic
membrane uniformly distributed in [10−7, 10−5] S/m and the
cytoplasm contained in the RBCs uniformly distributed in
[0.5, 0.7] S/m. Concerning the relative electrical permittivities,
they are assumed uniformly distributed in [72, 88], [8.1, 9.9]
and [72, 88] in the plasma, membrane and cytoplasm, respec-
tively.

A geometric formulation for EQS that includes a surface
model for the cell membranes, see [8], is used for the sim-
ulations. The domain is discretized with 979, 640 nodes and
5, 903, 234 tetrahedra. After the inclusion of the surface model
of cell membranes, the unknowns of the resulting complex and
symmetric system are 1, 582, 788.

Fig. 3. PDF of the imaginary part of the current.

Each problem is solved in about 128 seconds of wall time
including mesh loading, assembling of the sparse matrix, solv-
ing the linear system and post-processing for field computation.
The time required to perform 2000 simulations with the Monte
Carlo method is of roughly 3 days. The proposed method
requires 7 simulations for a total time of about 15 minutes.

Fig. 2 shows the behavior of the real part of the current
flowing between the electrodes. The histogram shows the
number of occurrences over 2000 Monte Carlo simulations and
the continuous line is the result obtained using the proposed
method. As it can be seen the PDF is trapezoidal since the real
part of the current distribution turns out to be dominated by
the uncertainties on plasma and cytoplasm conductivities. The
membrane conductivity has negligible effects on impedance
behavior, but, since the proposed method is very fast, also this
uncertain parameter has been simulated without a significant
computational effort. Fig. 3 shows the behavior of the imagi-
nary part of the current flowing between the electrodes. As it
can be seen the PDF turns out to be almost Gaussian since the
imaginary part of the current at this frequency is not dominated
by none of the conductivities or permittivities, thus resulting
closer to the central limit theorem hypotheses.
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